Skip to contents

Performs either bulk or step-wise hidden node selection.

Usage

hidden_node_sel(
  X,
  y,
  Q,
  n_init,
  type = "bulk",
  inf_crit = "BIC",
  task = "regression",
  unif = 3,
  maxit = 1000,
  ...
)

Arguments

X

Matrix of covariates

y

Vector of response

Q

Candidate number of hidden nodes

n_init

Number of random initialisations (tracks)

type

Selection type: "bulk" (the default) or "step"

inf_crit

Information criterion: "BIC" (default), "AIC" or "AICc"

task

"regression" (default) or "classification"

unif

Random initial values max value

maxit

maximum number of iterations for nnet (default = 100)

...

additional argument for nnet

Value

Optimal number of hidden nodes