Skip to contents

Calculates the importance of each input model based on information criterion and returns which node is least important

Usage

input_importance(
  X,
  y,
  q,
  n_init,
  inf_crit = "BIC",
  task = "regression",
  unif = 3,
  addition = FALSE,
  X_full = NULL,
  maxit = 1000,
  ...
)

Arguments

X

Matrix of covariates

y

Vector of response

q

Number of hidden nodes

n_init

Number of random initialisations (tracks)

inf_crit

Information criterion: "BIC" (default), "AIC" or "AICc"

task

"regression" (default) or "classification"

unif

Random initial values max value

addition

Switch for addition step (default FALSE)

X_full

Full matrix of covariates if X has some dropped

maxit

maximum number of iterations for nnet (default = 100)

...

additional argument for nnet

Value

The least important input node