Fits various tracks (different random starting values) and chooses best model
Source:R/nn_functions.R
nn_fit_tracks.Rd
Fits n_init tracks with different initial values and decides on best model based on information criteria.
Usage
nn_fit_tracks(
X,
y,
q,
n_init,
inf_crit = "BIC",
task = "regression",
unif = 3,
maxit = 1000,
...
)
Arguments
- X
Matrix of covariates
- y
Vector of response
- q
Number of hidden nodes
- n_init
Number of random initialisations (tracks)
- inf_crit
Information criterion:
"BIC"
(default),"AIC"
or"AICc"
- task
"regression"
(default) or"classification"
- unif
Random initial values max value
- maxit
maximum number of iterations for nnet (default = 100)
- ...
additional argument for nnet