Skip to contents

All functions

Boston
Standardized Boston Housing Data
covariate_eff()
Difference in average prediction for values above and below median
delta_method()
Perform delta method for a function FUN to calculate associated uncertainty
hessian()
Calculate hessian matrix
interpretnn() interpretnn.default() interpretnn.nnet() interpretnn.keras.engine.training.Model() interpretnn.nn() interpretnn.ANN() interpretnn.luz_module_fitted()
Statistically-Based Neural Networks
lr_test()
Likelihood ratio test for inputs
mlesim()
Perform m.l.e. simulation for a function FUN to calculate associated uncertainty
nnet_to_torch()
nnet weights to torch weights
nn_fit()
Fits various tracks (different random starting values) and chooses best model
nn_fit_nnet()
Fits various tracks (different random starting values) and chooses best model using nnet
nn_fit_torch()
Fits various tracks (different random starting values) and chooses best model using torch
nn_loglike()
Neural Network Normal Log-likelihood Value
nn_loss()
Neural network loss
nn_pred()
Neural network prediction
pce()
Partial covariate effect
plotci()
Plot Wald Confidence Intervals
plotnn()
Plot neural network architecture
sigmoid()
Sigmoid activation function
statnn-methods statnn,ANY-method statnn,keras.engine.training.Model-method
Methods for Function statnn in Package statnn
torch_to_nnet()
torch weights to nnet weights
VC()
Calculate variance-covariance matrix
wald_single_parameter()
Wald test for weights
wald_test()
Wald test for inputs